## Hyponormal measurable operators, affiliated to a semifinite von Neumann algebra

## Abstract:

Let M be a von Neumann algebra of operators on a Hilbert space H and  $\tau$  be a faithful normal semifinite trace on M. Denote by  $S(M,\tau)$  the \*-algebra of all  $\tau$ -measurable operators.

Let  $U \in M$  be an isometry and  $P \in M$  be a projection.

If  $UPU^* \le P$  and  $\tau(P) < +\infty$ , then UP = PU.

If  $A \in S(M,\tau)$  is hyponormal and  $U \in M$  is an isometry such that  $A^* = UAU^*$ , then the operator A is normal. Let an operator  $X \in S(M,\tau)$  be

- 1. hyponormal, or
- 2. of the form  $X = \lambda I + A$  with some  $\lambda \in C$  and a  $\tau$ -compact operator  $A \in S(M, \tau)$ .

If  $(ReX)_+ = |X|$  (or  $(ImX)_+ = |X|$ ), then  $X = |X| \ge 0$ .

If the operator  $A \in M$  is normal,  $B \in L_1(M,\tau) \cap L_2(M,\tau)$  and the operator T = A + B is hyponormal, then T is normal.

For the operator  $A \in L_2(M, \tau)$ , the following conditions are equivalent:

- (i) A is normal;
- (ii)  $\tau(PA*AP) \ge \tau(PAA*P)$  for all projections  $P \in M$ ; (iii)  $\tau(PA*AP) \le \tau(PAA*P)$  for all projections  $P \in M$ .

The operator  $A \in M$  is hyponormal if and only if  $\tau(PA^*AP) \ge \tau(PAA^*P)$  for all projections  $P \in M$  with finite  $\tau(P)$ .

If projections  $P,Q \in B(H)$  and  $n \in N$ , then the operator  $(PQ)^n$  is hyponormal if and only if PQ = QP.

Operator inequalities for degrees of hyponormal contractions are obtained. It is shown that any degree  $U^n$  of a hyponormal partial isometry U is a hyponormal partial isometry and  $U^{*n}U^n = U^*U$ .